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Abstract. In this paper we present the current achievement of our research
activity in the WISDOM project, whose aim is the definition of intelligent tech-
niques enabling effective and efficient information search in a distributed and
decentralized PDMS scenario. We focus on the query routing problem and we
define a new routing mechanism, which we call routing by mapping, in which
the query is sent to the peers whose subnetworks best approximate the concepts
required. In order to select the best subnetworks, the peer receiving the query
exploits information about the semantic approximation of the query concepts,
when moving towards each neighbour. This information is computed starting
from the semantic mappings established with the peer’s neighbours and it is
maintained into specifically devised data structures called Semantic Routing
Indices (SRIs), whose update we propose specific algorithms and protocols for.
The effectiveness of the achieved results has been experimentally proved through
a series of exploratory tests.

1 Introduction

The huge amount of data and services available on the Web opens many possibili-
ties for a user to answer her information need. However, without proper supporting
technologies, the user can easily get lost in her struggle to find the information she
requires. Usually, traditional search engines are not able to overcome this “information
overloading” problem; indeed querying and accessing distributed and heterogeneous in-
formation in an effective and efficient way requires to devise a whole series of techniques
in several synergic areas.

This is the stimulating scenario of the ongoing Italian Council co-funded WISDOM
(Web Intelligent Search based on DOMain ontologies) project, whose aim is the defi-
nition of intelligent techniques, based on domain ontologies, to perform effective and
efficient information search on the Web. The reference architecture is inspired by Peer
Data Management Systems (PDMSs) [4], a recent proposal synthesizing P2P flexibil-
ity and the semantic expressiveness of database technologies. Each peer maintains its
information in a OWL ontology, describing the informative contents of its underlying
sources, and it is connected to its neighbours through appropriate semantic mappings,
expressing how its own concepts are approximated by the ones available at the linked
peers.

* This work is partially supported by the Italian Council co-funded project WISDOM.



In such a setting, effectively answering a query means propagating it towards the peers
which are semantically best suited for answering the user needs. Flooding techniques
are not adequate for both efficiency and effectiveness reasons, in that the querying peer
would be overloaded with a large number of results, mostly irrelevant.

Our research activity in this project regards techniques allowing each peer to rank
its own neighbors w.r.t. their ability to answer a given query effectively. In this paper
we present a new routing mechanism, which we call routing by mapping, in which the
query is sent to the peers whose subnetworks best approximate the concepts required.
To this end a distributed index mechanism is adopted: each peer owns a Semantic
Routing Index (SRI) which summarizes the ability of its subnetworks to semantically
approximate the concepts of its schema. Such data structures are dynamically com-
puted exploiting the available semantic mappings and evolve with the network topology
following specifically devised algorithms and protocols.

The paper is organized as follows: in Section 2 we analyze the problem of query
routing and introduce our semantic approach; in Section 3 we present the SRI data
structures and its management framework; Section 4 shows the results we obtained in
our experimental tests and Section 5 concludes the paper.

2 Information Search in a PDMS

P2P systems offer the capability of accessing huge amounts of data, thanks to the in-
teraction of a great number of participants. Nevertheless, this kind of systems provide
very basic data management capabilities and rarely offer mechanisms to represent and
exploit their semantics, with negative consequences as to the effective localization and
retrieval of the data. On the other hand, PDMSs [4] represent a recent evolution of
original P2P systems, synthesizing database world semantic expressiveness and P2P
networks flexibility. They intend to offer a decentralized and easily extensible architec-
ture for advanced data management, in which anytime every user can act freely on her
data, while in the meantime accessing data stored by other participants.

In general, in such kinds of architectures, a query posed at a given peer is usually
answered presenting the local data, and it is then propagated through the network to
retrieve further useful information possibly owned by other peers. Nevertheless, it is not
desirable to forward the query regardless of the query capabilities of the destination
peers. In fact, peers containing unrelated data would be unnecessarily involved, the
network traffic would be uselessly multiplied and, most of all, the querying peer would
be overwhelmed by irrelevant results.

To this end, query routing techniques are needed to select the best destinations,
i.e. the peers able to supply the most useful information. Some works dealing with
this problem [6, 8] are based on “a posteriori” learning approaches, exploiting quan-
titative information about the retrieved results. However, these methods do not take
into account the possible presence of heterogeneous semantic knowledge about the con-
tents of the peers in the network: In [6] all peers are assumed to share the same set of
keywords they store data about, whereas in [8] each peer accepts as relevant answers
which approximate the query concepts with any concept (through the use of wildcards),
thus disregarding the grade of semantic similarity between them. Other approaches [2,
5] exploit such semantic information, which is computed starting from the schemas
associated to the peers’ contents, and provide semantic approximation strategies to
determine the most promising peers to forward a given query to. However, in these
works the routing mechanism is limited to the only local information provided by the
neighbouring peers. In other approaches, such as in [3], the neighbouring peers inform



“athlete”

sport team coach player
B 0.19 0.44 0.32 0.28
C 0.02 0.08 0 0.05
“singer”
(a) Semantic mappings. (b) SRI of peer A.

Fig. 1. Example of the semantic routing by mapping mechanism.

the querying peer also about the data reachable by their own subnetwork through a
summary of their subnetwork contents. This provides an interesting view of the network
which extends the traditional vision limited to the only neighboring peers. However, IR
style data representation and querying is assumed, and only quantitative information
is used to determine the best peers to be queried. In our work we rely on the notion
of summarized subnetworks as in [3], and we propose a routing mechanism, which we
call routing by mapping, where the selection of the best answering peers is based on
the semantic information about the peers’ contents.

2.1 Semantic Routing by Mapping

The routing mechanism we propose relies on the semantic mappings (originally de-
scribed in [7] for a heterogeneous centralized environment) that each peer establishes
between its schema and the ones of its neighbours by performing apposite schema
matching operations. By means of these mappings each concept of the peer schema is
associated to the most similar concepts of the neighbours schemas and each of these
associations is characterized by a numerical score, belonging to the interval [0,1] and
quantifying the level of semantic approximation between them. In the scenario we con-
sider, a query originating from a given peer is always expressed in terms of its reference
ontology. If routing was limited to the semantic knowledge each peer has on its neigh-
bours, every query reaching a peer would be forwarded to the neighbours having the
highest scores for the required concepts, since these peers have the highest probability
to produce correct results.

Example 1. Let us consider Figure 1-a, where peer A has two neighbours to which it
established appropriate semantic mappings: peers B and C. We now suppose that, ac-
cording to these mappings, concept “player” of peer A schema is associated to concepts
“athlete” of peer B and “singer” of peer C with two scores of 0.34 and 0.08, respec-
tively. This means that, according to our routing mechanism, a query posed to peer A
and asking for concept “player” would be preferably forwarded to peer B. O

2.2 Combining Semantic Mappings Scores

A good routing mechanism can not be limited to the exploitation of the information
about the neighbours alone. Indeed, in the neighbours selection, each peer should also
consider the approximation capability of the peers belonging to the subnetworks routed
by its neighbours (i.e. peer E, F and G in the Figure 1-a), as the query would likely
be propagated to these subnetworks too. Ideally, it would be desirable for each peer
to calculate a semantic mapping with each other peer of the system, so that this
information could be exploited in the routing process. However, an approach of this



kind is clearly not applicable in a P2P context, due to the excessive amount of data to
be stored because of the potential large number of peers.

Instead, in our approach, each peer creates and maintains cumulative information
summarizing the approximation capabilities of the whole subnetworks routed by each
of its neighbours. These summarized information is calculated by each peer by ap-
propriately combining the semantic mappings scores towards its neighbours with the
summarized information each neighbour has about its own subnetwork. Being such
information computed in the same manner, we obtain that the knowledge about map-
pings is propagated throughout the whole system and each peer can learn about all
other peers without being directly connected or interacting with them. Further, in order
to avoid the presence of cyclic paths in the updates propagation, when a peer connects
to the network a cycle detection mechanism based on global unique identifiers, as in [3],
may be adopted. To obtain the cumulative information we apply two different types of
operations, named aggregation and composition, to the original mapping scores. Before
introducing in detail the data structures we devised for conveniently maintaining this
summarized information, let us show by means of an example of use of these operations.

Example 2. Consider Figure 1-a. Peer A computes its semantic score towards B by
composing the similarity score between “player” and “athlete” (i.e. 0.34) with a score
obtained from peer B indicating how well concept “athlete” can be approximated in the
subnetwork including peer E and F. This last score is computed by peer B by aggregating
the scores characterizing its mappings for concept “athlete” towards neighbours E and
F. Specifically, these mappings involve concepts “sportsperson” (peer E) and “team
member” (peer F). Peer B sends the aggregated result to A, which compose it with its
own score for the mapping “player”-“athlete”, in order to obtain a final score expressing
how well the concept “player” can be semantically approximated by the subnetwork
routed at peer B. (Il

As to the choice of the composition and aggregation operators, in order to verify the
effectiveness of different alternatives, we performed several exploratory tests, whose
results are presented in section 4.

3 Semantic Routing Indices

To maintain the information about mapping scores, each peer owns a specially devised
data structure called Semantic Routing Index (SRI). The index is represented by a
matrix where the rows are associated to the peer’s neighbours, while the columns refer
to the concepts of its schema. An example of such data structures is represented in
Figure 1-b for peer A, whose schema is supposed to include only four concepts: “sport”,
“team”, “coach” and “player”.

Our idea is that each cell of the matrix stores a score representing how the concept
associated to a given column is semantically approximated by the subnetwork routed
by the neighbour associated to a given row. For example, the number 0.28 in the cell
corresponding to the last column and the second row, means that concept “player” of
peer A can be approximated through the subnetwork routed by peer B with a similarity
score of 0.28.

The scores into the indices are computed in an incremental way, on the basis of the
peer connections to the system, and following its evolution.
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Fig. 2. P2P Protocol (a) and sample scenario (b)

3.1 A Framework for SRI Evolution

In our framework an entity (a peer) is identified by a unique alphanumeric id and owns,
besides its actual data, a schema (MySchema) which the data comply to, a Semantic
Routing Index (SRI), and a list (MappingList) containing all the mappings between
the current peer and its neighbours.

The peers interact on the basis of the protocol articulating the communication
in four types of messages, whose sequence is depicted in Figure 2-a: (1) CONNEC-
TION_REQUEST, to request the creation of a new connection and information on
the schema of the receiver; (2) CONNECTION_REPLY, to complete the connection
replying with the requested schema; (3) UPDATE_REQUEST, sent by a peer that
has received a CONNECTION_REPLY to request information on the newly accessible
subnetwork; (4.1-4.3) UPDATE_REPLY, sent in reply to propagate the SRI update
information for the new connection.

This protocol is implemented by Algorithm 3.1, which each peer executes during
its lifetime, starting from the moment it connects to the P2P network. The algorithm
is composed by three main phases:

1. Initialization (lines 1-2), in which the peer executes the schemaMatching() opera-
tion on its schema (MySchema), calculating the values which will be implicitly used
in all the subsequent schemaMatching() operations, in order to make the scores
comparable and normalized;

2. Index creation (lines 3-4), in which the peer selects its neighbours and sends them
(by means of the send() function) a CONNECTION_REQUEST message contain-
ing its schema (MySchema);

3. Index update (lines 5-27), in which the peer waits indefinitely for incoming messages
and, depending on their type, performs different operations to maintain the routing
indices. These operations include the aggregation (aggregate Except()) and compo-
sition (compose()) introduced in the previous sections. Further, for each message
received, another one is generated according to the protocol.

Ezxample 3. Let us consider the scenario in Figure 2-b.1, where peer A is connected to
peers B and C, and peer D is going to connect to peer A. The table depicted besides
each peer represents its SRI. In the following, we denote the messages with the numbers



Algorithm 3.1 P2P Algorithm

1: MappingList [| < null; { // Initialization Phase}
2: schemaMatching(MySchema,MySchema);
3: for all selected neighbours do { // Index Creation Phase}

4:  send(neighbour, CONNECTION_REQUEST MySchema);
5: while true do { // Index Update Phase}
6:  wait for msg;
7:  if msg == CONNECTION_REQUEST then
8: (SRI [sender], MappingList [sender]|) < schemaMatching(MySchema,senderSchema);
9: send(sender, CONNECTION_REPLY MySchema);
10:  else if msg == CONNECTION_REPLY then
11: (SRI [sender], MappingList [sender]|) « schemaMatching(MySchema,senderSchema);
12: aggr «— aggregateExcept(sender);
13: send(sender, CONNECTION_REPLY aggr);
14:  else if msg== UPDATE_REQUEST then
15: SRI [sender] < compose (Mappinglist [sender],aggr);
16: aggr — aggregateExcept(sender);
17: send(sender,UPDATE_REPLY ,aggr);
18: for all neighbours do
19: if neighbour # sender then
20: aggr «— aggregateExcept(neighbour);
21: send (neighbour,UPDATE_REPLY ,aggr);
22:  else if msg == UPDATE_REPLY then
23: SRI [sender] < compose(MappingList [sender],aggr);
24: for all neighbours do
25: if neighbour # sender then
26: aggr «— aggregateExcept(neighbour);
27: send(neighbour,UPDATE_REPLY ,aggr);

specified in Figure 2-a. According to the protocol, the involved peers perform the follow-
ing operations (see Figures 2-b.2 and 2-b.3): (i) peers D and A exchange their schemas
by sending messages 1 and 2, so that they can calculate the schema matching between
them and extend their indices with an additional row (highlighted in gray in the figure)
corresponding to the new neighbour (lines 3-11 of Algorithm 3.1); (ii) D sends message
3 to A, requesting information about the subnetwork routed by A (lines 12-13); (iii) A
aggregates all the rows of its routing index, except that corresponding to the requesting
peer, and sends the result to D (message 4.1); then D composes this information with
its mapping associated to A and stores the result in its routing index (lines 14-17); (iv)
A sends a message 4.2 to each member of its original subnetwork, containing the row
of its routing index corresponding to the subnetwork newly reachable through D (in
this case peer D alone) (lines 18-21); (v) each peer that receives a message 4.2 from
A (peers B and C in our case) updates the row of its routing index corresponding to
A composing its mapping associated to A with the received information (lines 22-23).
Finally, notice that if peer D had had an existing subnetwork of connected peers, it
would have also had to send its aggregated information to A through message 3, and
eventually send its original neighbours the aggregated information it received from A
through message 4.3. ]



Peer2 Peer4 Peer5 Peer6

sport sport 0.1965 storage 0.0193

team club 0.1202 track 0.0356 article 0.0585
coach trainer 0.3858 signboard 0.0765 journal 0.0606
player athlete 0.1721 singer 0.0834 author 0.0962

e Peer5>7 Max-Prod Max-Min__Sum-Prod Sum-Min _ Tr-Prod _ Tr-Min

e tracklist  0.0251 0.2689 0.0420 0.2689 0.0093  0.1685
o track 0.0080 0.1325 0.0122 0.1325 0.0025 0.1326

singer 0.0647 0.3750 0.1042 0.3750 0.0253  0.3188

albumTitle 0.0686  0.3848  0.1080 0.3848 0.0269  0.2333
2nd experiment Peer5 >1 Max-Prod Max-Min _Sum-Prod Sum-Min__Tr-Prod _Tr-Min

tracklist ~ 0.0079 0.1907 0.0141 0.1982 0.0026 0.0945
track 0.0000 0.0530 0.0000 0.0530 0.0002 0.0444

singer 0.0409 0.2153 0.0642 0.2153 0.0161 0.2153
@ albumTitle 0.0023 0.0127 0.0027 0.0127 0.0002 0.0127
Gr RatioMax-Prod Max-Min__Sum-Prod Sum-Min__Tr-Prod _ Tr-Min
tracklist  3.18 141 2.98 1.36 3.51 1.78
track n/a 2.50 n/a 2.50 14.77 2.99
singer 1.58 1.74 1.62 1.74 1.58 1.48
albumTitle 29.83 30.30 40.00 30.30 174.44 18.31
(a) Experimental scenario (b) Results of 1°¢ (top) and 2™ (bottom) experiment

Fig. 3. Effectiveness test results

4 Experimental Evaluation

For our experiments we used SimJava 2.0, a discrete, event-based, general purpose
simulator, which allows us to verify the behaviour of our algorithms without using a
real P2P system. The scenario we modelled through this simulator corresponds to a
network of peers, each one with its own schema, different from the others and describing
a particular reality. Further, in order to deepen the tests at different levels of semantic
heterogeneity, we considered peers belonging to a small set of categories, where the
schemas of the peers in the same category describe the same reality from different points
of view. In Figure 3-a a portion of this network is depicted, where peers belonging to the
same category are identified by the same color. In particular, peers in the figure belong
to three different categories: sport (peers 2 and 4), music (5, 7, 8 and 9) and publications
(1, 3, 6 and 10). Notice that, since we currently are only in the initial phase of our
testing, the considered network scenarios are not particularly complex. In the future,
we will enrich them with more complicated network topologies and consider a larger
number of peers. In our experiments we evaluated the performances of our techniques
mainly in terms of effectiveness. We performed experiments about 1) comparability of
mapping scores and 2) the usefulness of semantic routing indices. Due to the lack of
space, we now present only a small selection of results for each type of these tests.

For the first type of experiments we consider the part of the network in Figure 3-a
surrounded by the broken line, including peers 2, 4, 5 and 6. The top of Figure 3-b
shows the mapping scores of peer 2, and the concepts these scores refer to. As can be
seen, the matching algorithm correctly maps each peer 2 concept to the corresponding
peer 4 concept. Also for peer 5 and 6, whose schemas belong to different categories,
associations are built between concepts considered the most similar for their semantics
and positions, however in this case the mapping scores are very low. Nevertheless, map-
ping scores comparability is demonstrated because, for each peer 2 term, the mapping
with the highest score is towards peer 4; this reflects the fact that peer 4, belonging
to the same peer 2 category, can semantically approximate peer 2 concepts in a better
way than peer 5 and 6 do.



For the second type of experiments we considered two alternative scenarios: the original
one as shown in Figure 3-b, and the one obtained by swapping the peers included in
the dotted regions. In the bottom part of Figure 3-b the first two tables show how the
scores in peer 5 routing index change when its subnetwork, originally including three
peers of the same peer 5 category, is replaced by a subnetwork of peers belonging to
a different category. In these tables, for each concept, six different scores are reported,
corresponding to the results obtained applying different mathematical functions im-
plementing aggregation and composition operations. In particular, the possible tested
alternatives for aggregation and composition are: a) maximum and product; b) max-
imum and minimum; ¢) algebraic sum and product; d) algebraic sum and minimum;
e) travel function and product; f) travel function and minimum. The travel function is
inspired to a function commonly used in travel demand applications when modelling
the aggregation of several alternatives [1]. In this type of tests, the key parameter
for effectiveness evaluation is the growth ratio, i.e. the measure of how bigger are the
scores of the original scenario w.r.t. the alternative one; we show these values in the
last table of Figure 3-b. As expected, the scores of the original scenario are significantly
higher (growth ratio greater than 1), reflecting that peer 5 concepts are semantically
approximated in a better way by the subnetwork of peers belonging to the same peer
5 category. As to the use of the composition function, all the combinations involving
product show a higher growth ratio (for example for “albumTitle” we have 40 with
algebraic sum and almost 175 with travel function). As to the use of the aggregation
function, all the possibilities show a satisfying behaviour, but we observed that the
travel function more clearly discriminates the “good” subnetworks.

5 Conclusions

In this paper we presented our research activity in the WISDOM project on distributed
query evaluation and, in particular, our new semantic routing by mapping mecha-
nism, the associated SRI structures and their update algorithms. In the future, we will
strengthen the proposed approach by including it in a theoretical framework, investi-
gating the semantics of the involved operations, and we will perform tests on larger
and more complex network topologies.
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