
A Native Extensible XML Query Processor
Towards Efficient and Effective MPEG-7 Querying

Federica Mandreoli, Riccardo Martoglia, Mattia Righini and Paolo Tiberio

Universit̀a di Modena e Reggio Emilia, Italy
{fmandreoli,rmartoglia,mrighini,ptiberio}@unimo.it

Abstract— In recent years the production of massive amounts
of visual information has led to the arrival of very large
multimedia Digital Libraries (DLs). The key to support efficient
search and management operations in such repositories is to
exploit metadata information for digital media, such as MPEG-
7 [4] based ones, which seem to be the most widely accepted.
The underlying XML syntax, together with the high versatility
of the provided constructs, make it easy to specify significant
and complex queries, however executing them efficiently on huge
quantities of data is not a trivial task. In this paper we provide
an overview of the XSiter system, a native and extensible XML
query processor providing very high performance in general
XML querying settings and whose flexible architecture can be
easily enhanced to better support the peculiarities of retriev-
ing multimedia objects through MPEG-7 annotation metadata.
Further, we consider possible “use-cases” and tasks related to
multimedia and video DLs querying and management which our
system can successfully accomplish.

I. I NTRODUCTION

In recent years the production of massive amounts of visual
information has led to the arrival of very large multimedia
Digital Libraries (DLs). The key to support efficient search
and management operations in such repositories is to exploit
metadata information for digital media. In this respect, a
multitude of standard initiatives and efforts have been recently
proposed. Among these initiatives, the Multimedia Content
Description Interface (also known as MPEG-7 [4]) seems to
be the most widely accepted by the major broadcasting com-
panies, hi-tech commodity producers and telecommunication
service providers that have joined their effort from 1996 to
2001 to develop a metadata standard for multimedia content.
MPEG-7 provides a complete set of tools for a detailed
description of audiovisual information. Essentially MPEG-7
descriptors are XML documents valid for schema definitions
written in MPEG-7 DDL (Data Definition Language). The
underlying XML syntax, together with the high versatility of
the provided constructs, make it easy to specify significant and
complex queries, however executing them efficiently on huge
multimedia DLs data is not a trivial task.

Let us first briefly analyze which requirements have to
be satisfied by a system that has to efficiently deal with
XML documents. Performing query processing on XML data
requires to manage the following issues:
• how to efficiently store XML documents;
• how to express queries;
• how to efficiently process queries.

To this end, XML enhanced RDBMSs could be exploited,
trying to take advantage of years of research and development
on relation databases. However, standard RDBMS supporting
XML extensions are not a viable solution: It has been proved
that due to the high nesting that characterizes XML documents
and due to the typical semi-structured nature of documents,
relational technology alone has poor performance. On the
other hand, native XML Databases (or XML base management
systems [3]) appear today as a very promising new tech-
nology, particularly when exploited in scenarios demanding
high querying performance. Further, in order to effectively and
efficiently manage MPEG-7 documents, a system needs also
to [6]:

• manage typed descriptors;
• provide indexing for typed values, text and structure;
• provide specific querying facilities for multimedia appli-

cations.

Since MPEG-7 is intrinsically extensible and since it could
be used for a wide range of applications, it is essential that
systems are also extremely extensible with respect to the
features mentioned above.

In this paper we introduce the XSiter (XML SIgnaTure
Enhanced Retrieval) system, a native and extensible XML
query processor providing very high querying performance in
general XML querying settings. The paper is organized as
follows:

• In Section II we describe XSiter flexible architecture,
which exploits specialized algorithms, indexes and stor-
ing facilities;

• Then, we show how it can be easily enhanced to even
better support the peculiarities of MPEG-7 data and
multimedia retrieval (Section III);

• Finally (Section IV) we consider possible “use-cases”
and tasks related to multimedia and video DLs querying
and management which our system can successfully
accomplish.

II. XS ITER, AN EXTENSIBLE XML QUERY PROCESSOR

In Figure 1 we can see the abstract architecture of XSiter.
The system is essentially composed by three subsystems, that
respectively manage, from the top to the bottom, the inter-
action with the user (GUI), the import process of documents
and queries and the query processing (Core System) and finally



Store System

Core System

GUI

Query Importer

Doc Importer Internal Doc 
Representation

Query Engine

Internal Query 
Representation

Result Visualizer

Query 
Language

Query Specifier

Doc.xml

Offline Process

Datastore Datastore

Datastore Collection

Fig. 1. Abstract Architecture of XSiter

the persistence of managed documents (Store System). Due to
the lack of space we will only give an overview of some of
the system features, however Figure 1 should be enough self-
describing to understand the basic role of each component.

In the Store System,datastorestructures (Figure 2) are
managed. Essentially, a datastore is a collection used for ag-
gregating conceptually related documents and for keeping their
representations persistent among different query sessions. In-
deed, in order to be processed by the query engine, documents
and queries are transformed in aninternal representation.
Such representation is the key of the system efficiency and is
exploited by our ad-hoc query processing algorithms. Queries
and documents are transformed in an almost homogenous
representation; in the following we will briefly describe only
the document one, being it the most complex. The chosen
internal representation addresses the main issues needed for
querying XML documents, which basically consist in finding
portions of documents that obey to structural and content
constraints, and consists of four main parts (see right part of
Figure 2):
• We have a compact representation (Signature) based on

a numbering schema that is used for solving tree pattern
matching (structural constraints);

• A simple document summary (Local Tag Index) is used
as afilter for limiting the search space. In particular, for
each tag that is present in a document, the first and the
last document positions are kept;

• The compact representation does not includevalues, that
are stored separately and are evaluated only by need
(value constraints);

• Finally, values, elements contents or attribute values, can
be indexed (Content Based Indexes) in order to speed up
the search process. Such part is optional and is generated
according to user needs.

Finally, along with the document internal representations, in
a datastore two shared global structures are also kept (see left
part of Figure 2), named Global TagIndex and TagMapping.
The Global TagIndex keeps track of which tag is present
in each managed document and is used to quickly filter out

Datastore

Signature

Values Local TagIndex Content Based
Indexes

Global TagIndex

TagMapping 

Stored Documents
(Internal Representation)

</>

</>

</> #

“...”

Fig. 2. Structure and content of a Datastore

documents that can not contain matches for a particular query.
Instead, TagMapping provides mappings between textual tags
and correspondent unique numbers (ids), which are used to
store tags in the most compact possible way.

Let us now analyze some of the system features more in
detail. As document signature we exploit thetree signature
structure [7], allowing us to maintain a small but sufficient
representation of the tree structures able to decide and solve
the structural constraints of the queries. As a coding schema,
the pre-order and post-orderranks [2] are used, enabling us
to easily test and discover the different structural relationships
between the elements, such as the ancestor, descendant, pre-
ceding and following ones.

By exploiting tree signatures properties, and in particular
their sequential nature, we have been able to devise and exploit
a series of ad-hoc algorithms with optimal I/O performance, as
the ones presented in [8]. XSiter provides different algorithms
solving the different problems of XML pattern matching: One
involving paths and two involving trees.Path matchingis the
most simple type of pattern matching, where the query is
expressed as a series of elements disposed in a simple linear
structure. More complex queries are ordered labelled trees
(ordered tree pattern matching), where the order between the
elements is important, and unordered labelled trees (unordered
tree pattern matching). Supporting all the different kinds
of pattern matching is essential, particularly for multimedia
querying; indeed, as we will specifically see with some ex-
amples in Section IV, while there are, for instance, certainly
situations where the ordered tree pattern matching perfectly
reflects the information needs of users, there are many other
that would prefer to consider query trees as unordered.

Besides structural constraints support, XSiter fully supports
query evaluation with value constraints, which is a requirement
of the utmost importance. Values database simply keeps for
each element/attribute the correspondent value. On the other
hand, values can also be organized in Content Based Indexes
in order to speed up the retrieval process. A Content Based
Index is constructed upon a specific tag for a specific kind of
search (for example indexes for exact or partial match) and its
abstract interface enables search algorithms to retrieve through
it all the elements whose content satisfies the specificated
condition. Although Content Based Indexes are not mandatory,



it is highly recommended to build them for the elements
or attributes that are more frequently queried. The system
includes efficient implementations of the most effective index
structures available forexact matchsearching, such as inverted
indexes for textual data. Standard versions of the matching
algorithms provide value support even when specific index
data on the queried elements is not available. On the other
hand, the system also providesvalue-specializedversions of
the different algorithms, taking full advantage of the possibly
available content-based indexes built on the content of the
document nodes. They enhance standard algorithms in two
ways: They recognize more useless elements and are able to
avoid the scanning of regions that do not contain any valid
match. This further enhances the system performances for
solving querying involving values.

In general, all XSiter algorithms efficiently process the
supporting data structures in a sequential way, skipping areas
of obviously no query answers, whenever possible. The key
to their efficiency is to skip as much of the underlying data
as possible, and at the same time never return back in the
processed sequence. Repositories involving a large number of
documents are efficiently managed and queried, also thanks to
the document filters exploiting Global TagIndex Data. Further,
a filter based on Local TagIndexes is also available, which is
used to limit the parts of a document that have to be scanned in
order to solve a particular query. These features, together with
the minimal memory usage of the algorithms, make the system
suitable for querying and managing very large documents.

XSiter is currently implemented as a general purpose sys-
tem, meaning that little special domain optimizations have
been currently applied but the architecture was developed to be
simply extensible. In particular, current algorithms use a very
high abstraction level of content index access that enables us to
substantially use different kinds of indexes without changing
the search algorithms. Further, specialized index structures can
be easily integrated and exploited in our system in order to
better match different application needs.

III. SPECIALIZING XSITER FORMPEG-7SUPPORT

AND MULTIMEDIA RETRIEVAL

Thanks to the above discussed features, XSiter is already
able to provide efficient querying support in very large XML
(MPEG-7) digital libraries. Specifically, the high system effi-
ciency with large documents is a particularly crucial require-
ment for multimedia DLs data querying, due to the huge size
of the associated metadata details, especially the ones for
videos. However, in order to improve efficacy and efficiency
for specific MPEG-7 and multimedia metadata applications,
we are working on enhancing our system as follows. The
value management will be specialized for managing typical
media descriptors. Indeed, as also noticed in [6], large portions
of the information contained in MPEG-7 media descriptions
typically consist of nontextual data and a system managing
them needs to keep the basic contents of media descriptions
in typed representation and not just as text. To this end, we
will include abstractions needed by the application layer in

order to manage complex types such as XML Schema data
types, and MPEG-7 specific extensions to them, including
arrays and matrices. Specialized index structures that are
suitable to manage these additional kinds of data will be
included in the system architecture. Notice that additional
kinds of indexes, such as the multidimensional ones presented
in [1] for numerical data, will also allow XSiter to easily
go beyond exact match for values, which is definitely not
enough in a multimedia metadata environment, and support
similarity search. Additional document summaries will also be
developed in order to better filter out uninteresting documents
or parts of them. Further, some extensions will be included in
the GUI subsystem, in particular the user will be helped to
specify MPEG-7 queries and audiovisual tools could also be
included to present results.

In order to better understand why these changes are useful
let us make an example. Suppose that we want to manage
an image collection. A typical content media descriptor for
images is the color histogram that defines an uniform quanti-
zation of the color space. In order to better support an external
application working on this data with XSiter, the abstraction
of the color histograms should be pushed down to the system,
in this way the application could directly interact with the
system using domain objects instead of pure values. Since
color histograms are multidimensional data, XSiter should be
enhanced with multidimensional indexes and the similarity
measure should be provided by the application itself.

IV. POSSIBLEXSITER USE-CASES IN MULTIMEDIA DLS

In this section we will briefly describe how some of the
features of our system could be successfully exploited in
order to accomplish some possible tasks related to multimedia
and video DLs querying and management. The considered
reference setting will be a Video DL containing Formula 1
video clips and their MPEG-7 metadata.

• The user information need could be quite specific:
“retrieve all the videos created by XY”, or “retrieve all
the segments involving pitstops”. These are very simple
queries which can be straightforwardly managed by
XSiter. The key is to efficiently retrieve the occurrences
of simple path structures with associated values, such as
//DescriptionMetadata//Creator[.//Name=
"XY"] and //VideoSegment//TextAnnotation
[.//Keyword="pitstop"] and perform simple
elaborations on the returned solutions. The expressed
relationship between elements are ancestor-descendant
ones, which are easily managed by means of the
path search algorithms and the underlying signature
representation of the documents. As to value support,
exact search is in this case required and efficiently
supported by means of XSiter value-specialized
algorithms, which from our tests are able to perform
more than 10 times faster than standard ones for typical
cases, when indexed information are available for the
most commonly queried elements; in the specific case,
inverted indexes are the best option.



• More sophisticated user needs may require XSiter support
to more complex query structures, involving ordered and
unordered twig patterns. For instance: “Retrieve all videos
containing a segment involving a pitstopfollowed byone
involving an engine failure”, which can be expressed and
evaluated as anordered twig:

VideoSegment

Video

Keyword = “Pitstop”

VideoSegment

Keyword = “Engine failure”

Further, an user could also be interested in a similar
but conceptually different query: “Retrieve all videos
containing segments involving an engine failureand
segments involving crashes”. In this case, the structure of
the twig pattern would be very similar to the one above,
but the order in which the interesting segments appear in
the video (and their elements in the MPEG-7 tree) is not
important; in other words, the proposed answers should
include the video involving the particular segments in
anyorder. Another example: “Retrieve all video segments
containing all the following cars”, where the cars will
be MPEG-7 identified objects, whose relative order in
the MPEG-7 annotation is obviously uninteresting for the
user. These are computationally more complex problems
than ordered matching and can be succesfully solved by
exploiting XSiter’s unordered matching algorithms.

• As most multimedia content can not be easily described
by linguistic terms and keywords only, more and more
next-generation context-based DLs annotations are based
on ontologies, which contain domain information on the
subject. For instance, in [5] a DL based on a pictorially-
enriched ontology is presented; such an ontology contains
information about typical scenes available in the reposi-
tory and also provides visual clues of them. By browsing
the ontology the user can easily retrieve all video clips
related to a particular class, such as “scenes showing track
bends”. This can be performed by using simple path (or
twig) queries on class annotations (e.g. scenes marked
as “class 5”), handled similarly to the ones discussed
in the previous points. However, how the videos of the
DL can be annotated w.r.t. the ontology classes? This
can be achieved by means of similarity queries on the
scene feature summaries, involving twig queries with both
structural and non-exact value constraints (e.g. “scenes
having motion vector similar to X”); in this case the
exploitation of multidimensional metric indexes, together
with XSiter value-specialized algorithms, appears funda-
mental for achieving a good efficiency.

• Similarity techniques could also be applied for solving
example-based queries, very frequent in multimedia DLs.
Such queries are also useful for ontology annotated
videos: For instance, the ontology could include a class

for “track bends”, however the user could be interested
in all videos involving a particular bend, the one shown
in a user-indicated scene.

• Always in the settings of ontology annotated DLs, by
combining the power of value similarity queries together
with structural aspects, the ontology could be enriched
and structured on different semantic levels, ranging from
classes derived from low-level feature similarities to
conceptually higher level concepts. For example, based
on the information derived from MPEG-7 low-level data
like motion descriptors, color istograms, and so on, a
first-level class on subshots about “overtakes” could be
defined and populated with examples. Then, a second
level class, such as “car duels” could be defined by means
of structural queries involving first level information
(“a scene containing at least two overtake subshots”);
then, a further higher level could include a class for
“exciting races” videos, defined as the ones involving
a high number of duels, and so on. All the associated
annotations could be efficiently produced on new video
materials w.r.t. the defined ontology by means of a series
of structural twig queries as supported by XSiter, and
could allow very effective querying possibilities on the
DL.

V. CONCLUSIONS

Thanks to its extensible architecture and its efficient match-
ing algorithms, our XSiter system is able to provide efficient
querying support in very large XML repositories, as we have
also experimentally proven through a number of tests, such
as the ones presented in [8]. The usefulness of the current
system features in a multimedia DL and MPEG-7 environment
is already quite relevant; nonetheless, the improvements and
specialization we plan to perform on the system should help to
quickly develop an even more MPEG-7 aware system without
the need to concern about typical XML search problems and
not impacting on the main query engine architecture.

REFERENCES

[1] E. Ch́avez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching
in metric spaces.ACM Computing Surveys, 33(3):273–321, 2001.

[2] P.F. Dietz. Maintaining Order in a Linked List. InProceedings of 14th
Anual ACM Symposium on Theory of Computing (STOC), pages 122–127,
1982.

[3] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele,
and T. Westmann. Anatomy of a native xml base management system.
The VLDB Journal, 11(4):292–314, 2002.

[4] J. M. Martinez. MPEG-7 standard overview, ISO/IEC JTC1/SC29/WG11
N6828. http://www.chiariglione.org/mpeg/standards/mpeg-7.

[5] C. Torniai, A. Del Bimbo, R. Cucchiara, and M. Bertini. Video
Annotation with Pictorially Enriched Ontologies. InProceedings of IEEE
International Conference on Multimedia and Expo (ICME), 2005.

[6] U. Westermann and W. Klas. An analysis of xml database solutions for
the management of mpeg-7 media descriptions.ACM Comput. Surv.,
35(4):331–373, 2003.

[7] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree Signatures for
XML Querying and Navigation. InProceedings of the XML Database
Symposium (XSym2003), pages 149–163, 2003.

[8] P. Zezula, F. Mandreoli, and R. Martoglia. Tree Signatures and Unordered
XML Pattern Matching. InProceedings of 30th International Conference
on Current Trends in Theory and Practice of Informatics (SOFSEM’04),
2004.


