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Abstract. In this paper we study the logical and computational prop-
erties of schema evolution and versioning support in object-oriented
databases. To this end, we present the formalisation of a general model
for an object base with evolving schemata and define the semantics of
the provided schema change operations. We will then sketch how the
encoding of such a framework in a suitable Description Logic will al-
low the introduction and solution of interesting reasoning tasks at global
database and single schema version levels.

1 Introduction

Schema evolution and versioning problems have been considered in the context
of long-lived database applications, where stored data were considered worth sur-
viving changes in the database schema [26]. According to the definitions given
in a consensual glossary [21], a database supports schema evolution if it allows
modifications of the schema without the loss of extant data; furthermore, it sup-
ports schema versioning if it allows the querying of all data by means of any
schema version, according to the user or application preferences. With schema
versioning, different schemata can be identified and selected by means of a suit-
able “coordinate system”: symbolic labels are often used in design systems to
this purpose, whereas proper time values are the elective choice for temporal
applications [14, 15]. For the sake of brevity, schema evolution can be considered
as a special case of schema versioning where only the current schema version is
maintained.

In this paper, we present a formal approach, which has been introduced and
analysed in [13], for the specification and management of schema versioning in
the general framework of an object-oriented database, and discuss its logical and
computational characteristics. The adoption of an object-oriented data model is
the most common choice in the literature concerning schema evolution, though
schema versioning in relational databases [11] has also been studied deeply. The
approach is based on:

– the definition of an extended object-oriented model supporting evolving
schemata, provided with all the usually considered schema changes, whose
semantics is formalised;



– the formulation of interesting reasoning tasks (e.g. concerning database con-
sistency), in order to support the design and the management of an evolving
schema;

– an encoding, which has been proved correct, in a suitable Description Logic,
which can then be used to solve the tasks defined for the schema versioning
management.

Within such a framework, the main problems connected with schema version-
ing support will be formally characterised, both from a logical and computational
viewpoint, leading to the enhancements listed in the following.

– The complexity of schema changes becomes potentially unlimited: in addi-
tion to the classical schema change primitives (a well-known comprehensive
taxonomy can be found in [4]), our approach enables the definition of com-
plex and articulated schema changes.

– Techniques for consistency checking and classification can be automatically
applied to any resulting schema. We consider different notions of consistency:
• Global Consistency, related to the existence of a legal database (or single

class) instance for the evolving schema;
• Local Consistency, related to the existence of a legal database (or class)

instance for a single schema version.
– Classification tasks we define include the discovery of implicit inclusion /

inheritance relationships between classes ([5]). Decidability and complexity
results are available for the above mentioned tasks in our framework [13] and
tools based on Description Logics can be used in practice.

– The process of schema transformation can be formally checked. The pro-
vided semantics of the various schema change operations makes it possible
to reduce the correctness proof of complex sequences of schema changes to
solvable reasoning tasks.

However, our semantic approach has not thoroughly addressed the so-called
change propagation problem yet, which concerns the effects of schema changes
on the underlying data instances. In general, change propagation can be ac-
complished by populating the new schema version with the results of queries
involving extant data connected to previous schema versions. Moreover, from a
theoretical point of view, dealing with the presence of object identifiers (OIDs,
which correspond to real and conceptual objects in the “real world”) represents
a non-trivial problem for the definition of such a query language, which, thus,
must be very carefully designed. In Section 4, our proposal will be reviewed in
the light of previous approaches concerning object languages dealing with OIDs
(e.g. [1, 19, 20, 10]), and directions for future developments will also be sketched.

The paper is organised as follows. Section 2 introduces the syntax and the
semantics of an object-oriented model for evolving schemata support. Section 3
formally defines and exemplifies reasoning problems which are relevant for the
design and the management of an evolving schema and analyses their computa-
tional complexity. In particular, Section 3.1 mentions a provably correct encod-
ing of the object-oriented model for evolving schemata into a Description Logic,



showing that theoretical and practical results from the Description Logic field
can be applied in our framework. After a survey of the current status of the
field, a critical discussion (Sec. 4) about the proposed approach will precede the
conclusions (Sec. 5).

2 The Data Model

In this Section we summarise a general object-oriented model for evolving schemata
which supports the taxonomy usually adipted for schema changes, as first pro-
posed in [13]. To this end, we will first formally introduce the syntax and se-
mantics for a schema (version) and for the supported schema changes, and then
formulate some interesting reasoning problems and analyse their computational
properties.

2.1 Syntax and Semantics

The object-oriented model we propose allows for the representation of multiple
schema versions. It is based on an expressive version of the “snapshot” – i.e.,
single-schema – object-oriented model introduced by [1] and further extended
and elaborated in its relationships with Description Logics by [8, 9]; in this paper
we borrow the notation from [8]. The language embodies the features of the static
parts of UML/OMT and ODMG and, therefore, it does not take into account
those aspects related to the definition of methods. At the end of section 3.1
suggestions will be given on how to extend even more the expressiveness of the
data model, both at the level of the schema language for classes and types and
at the level of the schema change language.

The definition of an evolving schema S is based on a set of class and attribute
names (CS and AS respectively) and includes a partially ordered set of schema
versions. The initial schema version of S contains a set of class definitions having
one of the following forms:

Class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T
View-class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T

A class definition introduces just necessary conditions regarding the type of the
class – this is the standard case in object-oriented data models – while views
are defined by means of both necessary and sufficient conditions. The symbol T
denotes a type expression built according to the following syntax:

T → C |
Union T1, . . . ,Tk End | (union type)
Set-of [m,n] T | (set type)
Record A1:T1, . . . ,Ak:Tk End (record type)

where C ∈ CS , Ai ∈ AS , and [m,n] denotes an optional cardinality constraint.



A schema version in S is defined by the application of a sequence of schema
changes to a preceding schema version. The schema change taxonomy is built by
combining the model elements which are subject to change with the elementary
modifications, add, drop and change, they undergo. In this paper only a basic
set of elementary schema change operators will be introduced; it includes the
standard ones found in the literature (e.g., [4]); however, it is not difficult to
consider the complete set of operators with respect to the constructs of the data
model:

Add-attribute C, A, T End
Drop-attribute C, A End
Change-attr-name C, A, A’ End
Change-attr-type C, A, T ’ End
Add-class C, T End
Drop-class C End
Change-class-name C, C’ End
Change-class-type C, T ’ End
Add-is-a C, C’ End
Drop-is-a C, C’ End

In a framework supporting schema versioning, a mechanism for defining ver-
sion coordinates is required. Such coordinates will be used to reference distinct
schema versions which can then be employed as interfaces for querying extant
data or modified by means of schema changes. We require that different schema
versions have different version coordinates. At present, we omit the definition
of a schema version coordinate mechanism and simply reference distinct schema
versions by means of different subscripts. As a matter of fact, this approach is
quite general in order to identify different versions. Any kind of versioning di-
mension usually considered in the literature could actually be employed – such
as transaction time, valid time and symbolic labels – provided that a suitable
mapping between version coordinates and index values is defined.

An evolving object-oriented schema is a tuple S = (CS ,AS ,SV0,MS), where:

– CS and AS are finite sets of class and attribute names, respectively;
– SV0 is the initial schema version, which includes class and view definitions

for some C ∈ CS ;
– MS is a set of modifications Mij, where i, j denote a pair of version coordi-

nates. Each modification is a finite sequence of elementary schema changes.

The set MS induces a partial order SV over a finite and discrete set of
schema versions with minimal element SV0. Hence SV0 precedes every other
schema version and the schema version SVj represents the outcome of the ap-
plication of Mij to SV i. S is called elementary if every Mij in MS contains
only one elementary modification, and every schema version SVi has at most
one immediate predecessor. In the following we will consider only elementary
evolving schemata.

Let us now introduce the meaning of an evolving object-oriented schema S.
Informally, the semantics is given by assigning to each schema version a possible



legal database state – i.e., a legal instance of the schema version – conforming
to the constraints imposed by the sequence of schema changes starting from the
initial schema version.

Formally, an instance I of S is a tuple I =(OI , ρI , (I0, . . . , In)), consisting
of a finite set OI of object identifiers, a function ρI : OI �→ VOI giving a value
to object identifiers, and a sequence of version instances Ii, one for each schema
version SV i in S. The set VOI of values is defined by induction as the smallest
set including the union of OI with all possible “sets” of values and with all
possible “records” of values. Although the set VOI is infinite, we consider for an
instance I the finite set VI of active values, which is the subset of VOI formed
by the union of OI and the set of values assigned by ρI ([8]).

A version instance Ii =(πIi , ·Ii) consists of a total function πIi : CS �→ 2O
I
,

giving the set of object identifiers in the extension of each class C ∈ CS for
that version, and of a function ·Ii (the interpretation function) mapping type
expressions to sets of values, such that the following is satisfied:

CIi = πIi(C)

(Union T1, . . . ,Tk End)Ii = T Ii
1 ∪ . . . ∪ T Ii

k

(Set-of [m,n] T )Ii = {{| v1, . . . , vk |} | m ≤ k ≤ n, vj ∈ T Ii ,

for j ∈ {1, . . . , k}}
(Record A1:T1, . . . ,Ah:Th End)Ii = {[[A1 : v1, . . . , Ah : vh, . . . , Ak : vk]] |

for some k ≥ h,

vj ∈ T Ii

j , for j ∈ {1, . . . , h},
vj ∈ VOI , for j ∈ {h + 1, . . . , k}}

where an open semantics for records is adopted (called *-interpretation in [1])
in order to give the right semantics to inheritance. In a set constructor if the
minimum or the maximum cardinalities are not explicitly specified, they are
assumed to be zero and infinite, respectively.

A legal instance I of a schema S should satisfy the constraints imposed by
the class definitions in the initial schema version and by the schema changes
between schema versions. An instance I of a schema S is said to be legal if:

– for each class definition in SV0

Class C is-a C1, . . . ,Ch disjoint Ch+1, . . . ,Ck type-is T , it holds that:
CI0 ⊆ CI0

j for each j ∈ {1, . . . , h},
CI0 ∩ CI0

j = ∅ for each j ∈ {h + 1, . . . , k},
{ρI(o) | o ∈ πI0(C)} ⊆ T I0 ;

– for each view definition in SV0

View-class C is-a C1, . . . ,Ch disjoint Ch+1 , . . . ,Ck type-is T , it holds that:
CI0 ⊆ CI0

j for each j ∈ {1, . . . , h},
CI0 ∩ CI0

j = ∅ for each j ∈ {h + 1, . . . , k},
{ρI(o) | o ∈ πI0(C)} = T I0 ;



Add-attribute C, A, T πIj (C) =

πIi(C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]] ∧ v ∈ TIj},

πIi (D) = πIj (D) for all D �= C

Drop-attribute C, A πIi (C) = πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]},

πIi (D) = πIj (D) for all D �= C

Change-attr-name C, A, A′ πIi (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]} =

πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A′ : v, . . .]]},

πIi (D) = πIj (D) for all D �= C

Change-attr-type C, A, T′ πIi (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]] ∧ v ∈ T′Ij} =

πIj (C) ∩ {o ∈ OI | ρI(o) = [[. . . ,A : v, . . .]]},

πIi (D) = πIj (D) for all D �= C

Add-class C, T πIi (C) = ∅, ρI(πIj (C)) ⊆ TIj ,

πIi (D) = πIj (D) for all D �= C

Drop-class C πIj (C) = ∅, πIi(D) = πIj (D) for all D �= C

Change-class-name C, C′ πIi (C) = πIj (C′), πIi(D) = πIj (D) for all D �= C,C′

Change-class-type C, T′ πIj (C) = πIi(C) ∩ {o ∈ OI | ρI(o) ∈ T′Ij},

πIi (D) = πIj (D) for all D �= C

Add-is-a C, C′ πIj (C) = πIi(C) ∩ πIi(C′), πIi(D) = πIj (D) for all D �= C

Drop-is-a C, C′ πIi (C) = πIj (C) ∩ πIj (C′), πIi (D) = πIj (D) for all D �= C

Table 1. Semantics of the schema changes.

– for each schema change Mij in M, the version instances Ii and Ij satisfy
the equations of the corresponding schema change type at the right hand
side of Tab. 1.

3 Using the Data Model

According to the semantic definitions given in the previous section, several rea-
soning problems can be introduced, in order to support the design and the man-
agement of an evolving schema:

a. Global/Local Schema Consistency: an evolving schema S is globally con-
sistent if it admits a legal instance; a schema version SV i of S is locally
consistent if the evolving schema S↓i– obtained from S by reducing the set
of modificationsMS↓i to the linear sequence of schema changes in MS which



led to the version SV i from SV0– admits a legal instance. In the following,
a global reasoning problem refers to S, while a local one refers to S↓i.

b. Global/Local Class Consistency: a class C is globally inconsistent if for every
legal instance I of S and for every version SVi its extension is empty, i.e.,
∀i. πIi(C) = ∅; a class C is locally inconsistent in the version SV i if for
every legal instance I of S↓i its extension is empty, i.e., πIi (C) = ∅.

c. Global/Local Class Disjointness: two classes C, D are globally disjoint if for
every legal instance I of S and for every version SV i their extensions are
disjoint, i.e., ∀i. πIi(C) ∩ πIi(D) = ∅; two classes C, D are locally disjoint
in the version SV i if for every legal instance I of S↓i their extensions are
disjoint, i.e., πIi(C) ∩ πIi(D) = ∅.

d. Global/Local Class Subsumption: a class D globally subsumes a class C if
for every legal instance I of S and for every version SV i the extension of C
is included in the extension of D, i.e., ∀i. πIi(C) ⊆ πIi(D); a class D locally
subsumes a class C in the version SVi if for every legal instance I of S↓i the
extension of C is included in the extension of D, i.e., πIi(C) ⊆ πIi(D).

e. Global/Local Class Equivalence: two classes C, D are globally/locally equiv-
alent if C globally/locally subsumes D and viceversa.

Please note that the classical subtyping problem – i.e., finding the explicit rep-
resentation of the partial order induced on a set of type expressions by the
containment between their extensions – is a special case of class subsumption, if
we restrict our attention to view definitions.

As to the change propagation task, which is one of the fundamental task
addressed in the literature (see Sec. 4), it is usually dealt with by populating the
classes in the new version with the result of queries over the previous version.
The same applies for our framework: a language for the specification of views can
be defined for specifying how to populate classes in a version from the previous
data. Formally, we require a query language for expressing views providing a
mechanism for explicit creation of object identifiers. At present, our approach
includes one single data pool and a set of version instances which can be thought
as views over the data pool. Therefore we consider update as a schema augmenta-
tion problem in the sense of [19], where the original logical schema is augmented
and the new data may refer to the input data. The result of applying any view to
a source data pool may involve OIDs from the source besides the new required
OIDs to be created. The association between the source OIDs and the target
ones should not be destroyed, and only the target data pool will be retained. In
Section 4 an alternative approach will be discussed. Of course, at this point the
problem of global consistency of an evolving schema S becomes more complex,
since it involves the additional constraints defined by the data conversions: an
instance would therefore be legal if it satisfies not only the constraints of its the
definition, but also the constraints specified by the views. Obviously, a schema
S involving a schema change for which the corresponding semantics expressed
by the equation in Tab. 1 and the associated data conversions are incompat-
ible would never admit a legal instance. In general, the introduction of data
conversion views makes all the reasoning problems defined above more complex.
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Fig. 1. The Employee initial schema version in UML notation.

We will try to explain the application of the reasoning problems through an
example. Let us consider an evolving schema S describing the employees of a
company. The schema includes an initial schema version SV0 defined as follows:

Class Employee type-is Union Manager, Secretary, Worker End;
Class Manager is-a Employee disjoint Secretary, Worker ;
Class Secretary is-a Employee disjoint Worker ;
Class Worker is-a Employee;
View-class Senior type-is Record has staff: Set-of [2,n] Worker End;
View-class Junior type-is Record has staff: Set-of [0,1] Worker End;
Class Executive disjoint Secretary, Worker;
View-class Everybody type-is Union Senior, Junior End End;

Figure 1 shows the UML-like representation induced by the initial schema SV0;
note that classes with names prefixed by a slash represent the views. The evolving
schema S includes a set of schema modifications MS defined as follows:

(M01) Add-is-a Secretary, Manager End;
(M02) Add-is-a Everybody, Manager End;
(M23) Add-is-a Everybody, Secretary End;
(M04) Add-is-a Executive, Employee End;
(M45) Add-attribute Manager, IdNum, Number End;
(M56) Change-attr-type Manager, IdNum, Integer End;
(M67) Change-attr-type Manager, IdNum, String End;
(M68) Drop-class Employee End;

Let us analyse the effect of each schema change Mij by considering the schema
version SVj it produces.



First of all, it can be noticed that in SV0 the Junior and Senior classes
are disjoint classes and that Everybody contains all the possible instances of the
record type. In fact, Everybody is defined as the union of view classes which are
complementary with respect to the record type: any possible record instance is
the value of an object belonging either to Senior or Junior.

Secretary is inconsistent in SV1 since Secretary and Manager are disjoint:
its extension is included in the Manager extension only if it is empty (for each
version instance I1, SecretaryI1 = ∅). Therefore, Secretary is locally incon-
sistent, as it is inconsistent in SV1 but not in SV0.

The schema version SV3 is inconsistent because Secretary and Manager,
which are both superclasses of Everybody, are disjoint and the intersection of
their extensions is empty: no version instance I3 exists such that EverybodyI3 ⊆
∅. It follows that S is locally inconsistent with respect to SV3 and, thus, globally
inconsistent (although is locally consistent wrt the other schema versions).

In SV4, it can be derived that Executive is locally subsumed by Manager,
since it is a subclass of Employee disjoint from Secretary and Worker (Manager,
Secretary and Worker are a partition of Employee).

The schema version SV5 exemplifies a case of attribute inheritance. The
attribute IdNum which has been added to the Manager class is inherited by the
Executive class. This means that every legal instance of S should be such that
every instance of Executive in SV5 has an attribute IdNum of type Number,
i.e., ExecutiveI5 ⊆ {o | ρI(o) = [[. . . , IdNum : v, . . .]] ∧ v ∈ NumberI5}. Of
course, there is no restriction on the way classes are related via subsumption, and
multiple inheritance is allowed as soon as it does not generate an inconsistency.

The Change-attr-type elementary schema change allows for the modification
of the type of an attribute with the proviso that the new type is not incompat-
ible with the old one, like in M56. In fact, the semantics of elementary schema
changes as defined in Tab. 1 is based on the assumption that the updated view
should coexist with the starting data, since we are in the context of update as
schema augmentation. If an object changes its value, then its object identifier
should change, too. Notice that, for this reason, M67 leads to an inconsistent
version if Number and String are defined to be non-empty disjoint classes. Since
the only elementary change that can refer to new objects is Add-class, in order
to specify a schema change involving a restructuring of the data and the cre-
ation of new objects – like in the case of the change of the type of an attribute
with an incompatible new type – a sequence of Drop-class and Add-class should
be specified, together with a data conversion view specifying how the data is
converted from one version to the other.

The deletion of the class Employee in SV8 does not cause any inconsistency
in the resulting schema version. In SV8 the Employee extension is empty and
the former Employee subclasses continue to exist (with the constraint that their
extensions are subsets of the extension of Employee in SV6). Notice that, in a
classical object model where the class hierarchy is explicitly based on a DAG,
the deletion of a non-isolated class would require a restructuring of the DAG
itself (e.g. to get rid of dangling edges).



3.1 Computational Properties of Reasoning

In this Section we only summarise the main results on the computational cost
of reasoning in the proposed framework.

Theorem 1. Given an evolving schema S, the reasoning problems defined in the
previous Section are all decidable in EXPTIME with a PSPACE lower bound.
The reasoning problems can be reduced to corresponding satisfiability problems
in the ALCQI Description Logic.

This has been proved in [13] by establishing a relationship between the pro-
posed model for evolving schemata and the ALCQI Description Logic; for a
full account of ALCQI, see, e.g., [7]. To this end, a correct and complete en-
coding from an evolving schema into an ALCQI knowledge base Σ has been
provided, such that the reasoning problems mentioned in the previous section
can be reduced to corresponding Description Logics satisfiability problems, for
which extensive theories and well founded and efficient implemented systems ex-
ist. In particular, the semantics of any applied schema change Mij ∈ MS (which
gives rise to an inclusion dependency between database instances according to
Tab. 1) is translated into a corresponding axiom to be added to the knowledge
base (see [13]). The encoding is grounded on the fact that there is a provable cor-
respondence between the models of the knowledge base and the legal instances
of the evolving schema.

Please note that the worst case complexity between PSPACE and EXPTIME
does not imply bad practical computational behaviour in the real cases: in fact,
a preliminary experimentation with the Description Logic system FaCT [18,17]
shows that reasoning problems in realistic scenarios of evolving schemata are
solved very efficiently.

As a final remark, it should be noted that the high expressiveness of the
Description Logic constructs can capture an extended version of the presented
object-oriented model, at no extra cost with respect to the computational com-
plexity, since the target Description Logic in which the problem is encoded does
not change. This includes not only taxonomic relationships, but also arbitrary
boolean constructs, inverse attributes, n-ary relationships, and a large class of
integrity constraints expressed by means of ALCQI inclusion dependencies [8].
The last point suggests that axioms modeling schema changes can be freely com-
bined in order to transform a schema in a new one. Some combination can be
defined at database level by introducing new non-elementary primitives.

4 Comparison with other Approaches

The problems of schema evolution and schema versioning support have been ex-
tensively studied in relational and object-oriented database papers: [26] provides
an excellent survey on the main issues concerned. The introduction of schema
change facilities in a system involves the solution of two fundamental problems:
the semantics of change, which refers to the effects of the change on the schema



itself, and the change propagation, which refers to the effects on the underlying
data instances. The former problem involves the checking and maintenance of
schema consistency after changes, whereas the latter involves the consistency of
extant data with the modified schema.

In the object-oriented field (see [27, 11] for the relational case), two main
approaches were followed to ensure consistency in pursuing the “semantics of
change” problem. The first approach is based on the adoption of invariants and
rules, and has been used, for instance, in the ORION [4] and O2 [12] systems.
The second approach, which was proposed in [25], is based on the introduction
of axioms. In the former approach, the invariants define the consistency of a
schema, and definite rules must be followed to maintain the invariants satisfied
after each schema change. Invariants and rules are strictly dependent on the
underlying object model, as they refer to specific model elements. In the lat-
ter approach, a sound and complete set of axioms (provided with an inference
mechanism) formalises the dynamic schema evolution, which is the actual man-
agement of schema changes in a system in operation. The approach is general
enough to capture the behaviour of several different systems and, thus, is useful
for their comparison in a unified framework. The compliance of the available
primitive schema changes with the axioms automatically ensures schema consis-
tency, without need for explicit checking, as incorrect schema versions cannot
actually be generated.

For the “change propagation” problem, several solutions have been proposed
and implemented in real systems [4, 12, 23, 24]. In all cases, simple default mech-
anisms can be used or user-supplied conversion functions must be defined for
non-trivial extant object updates.

As far as complex schema changes are concerned, [22] considered sequences of
schema change primitives to make up high-level useful changes, solving the prop-
agation to objects problem with simple schema integration techniques. However,
with this approach, the consistency of the resulting database is not guaranteed
nor checked. In [6], high-level primitives are defined as well-ordered sets of prim-
itive schema changes. Consistency of the resulting schema is ensured by the use
of invariants’ preserving elementary steps and by ad-hoc constraints imposed on
their application order. In other words, consistency preservation is dependent
on an accurate design of high-level schema changes and, thus, still relies on the
database designer/administrator’s skills.

In this paper we have introduced an approach to schema versioning which
considers a (conceptual) schema change as a (logical) schema augmentation,
in the sense of [19]. In fact, the sequence of schema versions can be seen as
an increasing set of constraints, as defined in Tab. 1; every elementary schema
change introduces new constraints over a vocabulary augmented by the classes
for the new version. An update of the schema is also reflected by the introduction
of materialised views at the level of the data which specify how to populate the
classes of the new version from the data of the previous version. Formally, in
our approach the materialised views coexist together with the base data in the



same pool of data. In some sense, there is no proper evolution of the objects
themselves, since the emphasis is given to the evolution of the schema.

More complex is the case when it is needed that a particular object maintains
its identity over different version – i.e., the object evolves by varying its structural
properties – and it is requested to have an overview of its evolution over the
various versions. This is the case when a query – possibly over more than one
conceptual schema – requires an answer about an object from more than one
version.

In this case an explicit treatment of the partial order over the schema ver-
sions induced by the schema changes is required at the level of the semantics.
Formally, this partial order defines some sort of “temporal structure” which leads
us to consider the evolving data as a (formal) temporal database with a tempo-
rally extended conceptual data model [16, 3, 2]. With such an approach, different
formal “timestamps” can be associated with different schema versions: all the
objects connected with a schema version are assigned the same timestamp, such
that each data pool represents a homogeneous state (snapshot) in the database
evolution along the formal time axis1. Objects belonging to different versions
can be distingushed by means of the object’s OID and the timestamp.

In such a framework, the (materialised) views expressing the data conver-
sions can be expressed as temporal queries. In some sense, we can say that
such a query language operates in a schema translation fashion[10] instead of a
schema augmentation, where new data are presumed to be independent of the
source data and an explicit mapping between them has to be maintained. Mul-
tischema queries can be seen as temporal queries involving in their formulation
distinct (formal) timestamps. Moreover, in case (bi)temporal schema version-
ing is adopted, this “formal” temporal dimension has also interesting and non-
trivial connections, which deserve further investigation, with the “real” temporal
dimension(s) used for versioning.

Finally, the main application purpose of schema versioning is traditionally
considered the reuse of legacy applications. Programs which were written and
compiled in accordance to a schema version SV i are expected to still work even
if the schema has been changed to SVj and the extant data have been changed
accordingly: in a system supporting schema versioning, it would be sufficient to
use the past schema version SV i to execute the application. In order to ensure
full compatibility of current data with any past schema version (and applica-
tions using them), we have to introduce and enforce the notion of monotonicity.
The schema modification Mij producing the schema version SV j from SV i is
monotonic if the following inclusion relationship holds:

−→Ij ⊆ −→Ii , where −→Ik = {Ik | Ik is a legal version instance for SVk}

Notice that not all the considered schema changes are monotonic: for example,
the modification Change-attr-type C,A,T ′ is monotonic if and only if the new
attribute type T ′ is a subtype of the previous A type. Furthermore, notice that,
1 This case corresponds to the multi-pool solution for temporal schema versioning of

snapshot data in the [11] taxonomy.



although a monotonic schema change implies a “reduction” in the current set of
possible legal instances, the monotonicity constraint is not too restrictive in prac-
tice, as also useful “capacity-augmenting” changes can be considered monotonic:
Add-class and Add-attribute (owing to the open record semantics) formally are.
If all the schema changes in a sequence of modifications (e.g. MS↓i which led
from SV0 to SV i) are monotonic, the definition ensures that any legal instance
of SV i was also a legal instance of SV0. Therefore, any legacy query written
for the schema SV0 can still be run on the current database instance connected
with SVi, producing the same results as when SV0 was the current schema ver-
sion. In case the sequence also contains non-monotonic changes, legacy queries
are not ensured to still 100% properly work (of course they do if they do not
involve the schema portion which underwent the non-monotonic change). The
interesting issues connected with the monotonicity property and its enforcement
will deserve a thorough investigation in our future research.

5 Conclusions and Future Developments

This paper deals with the support of database schema evolution and versioning
by presenting and discussing a general framework based on a semantic approach,
where the notion of change is seen as schema augmentation. As a consequence,
we were able to define interesting reasoning tasks, to prove their computational
complexity, and to reduce them to a reasoning problem in Description Logics for
which inference tools do exist.

We are currently working to extend the framework presented in this paper to
include a (simple) view language for data conversion in the schema augmentation
context [19], for which the evaluation, consistency, and containment problems
(under the constraints given by the evolving schema) could still be proved de-
cidable. Once this view language is available, it would be possible to use it also
for accessing the data through the schema versions, in the case when the schema
evolves but a single database is maintained. Legacy applications could reuse the
same query formulation related to a version of the schema different from the
one modelling the actual data. This approach would also allow for multi-schema
queries. In the database literature, the potentialities of queries involving multiple
schema versions have been considered to a limited extent so far. For instance,
relational queries [26] are usually solved with the help of a constructed schema,
simply consisting of the union (or intersection) of all the attributes contained
in the schema versions involved. Simple conversion functions are used to adapt
data, stored according to a schema, to the constructed schema. On the other
hand, this approach could be used as a basis for allowing the reformulation of
multi-schema query answering as a view-based query processing problem, where
powerful reasoning techniques on the query and the schemata can be deployed.
In this way, complex relationships between extant data connected to different
schema versions could be taken into account and sophisticated mechanisms could
be used to combine them to construct the query answer in a provably correct
way.



Further work will also be devoted to study the extensions/modifications of
the proposed framework concerning the issues sketched in the previous Section.

References

1. S. Abiteboul and P. Kanellakis. Object identity as a query language primitive.
Journal of the ACM, 45(5):798–842, 1998. A first version appeared in SIGMOD’89.

2. A. Artale and E. Franconi. Schema integration of temporal databases. Technical
report, University of Manchester, 1999.

3. A. Artale and E. Franconi. Temporal ER modeling with description logics. In Proc.
of Int’l Conference on Conceptual Modeling (ER). Springer-Verlag, November 1999.

4. J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. In Proc. of ACM Int’l Conf.
on Management of Data SIGMOD, May 1987.

5. S. Bergamaschi and B. Nebel. Automatic Building and Validation of Multiple
Inheritance Complex Object Database Schemata. International Journal of Applied
Intelligence, 4(2):185–204, 1994.
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